29. Miao R, Lung SC, Li X,  Li XD, Chye ML. Thermodynamic insights into an interaction between ACYL-COA-BINDING PROTEIN2 and LYSOPHOSPHOLIPASE2 in Arabidopsis. J. Biol. Chem., 2019,  doi: 10.1074/jbc.

28. Zhou Y, Li C, Peng J, Xie L, Meng L, Li Q, Zhang J,  Li XD, Li X, Huang X, Li X.  DNA-Encoded Dynamic Chemical Library and Its Applications in Ligand Discovery. J. Am. Chem. Soc., 2018, 140(46), 15859-15867.

27. Li X, Li XM, Jiang Y, Liu Z, Cui Y, Fung KY, van der Beelen SHE, Tian G, Wan L, Shi X, Allis CD, Li H, Li Y,  Li XD. Structure-guided development of YEATS domain inhibitors by targeting π-π-π stacking. Nat. Chem. Biol., 2018, 14, 1140-1149. 

26. Bao X, Xiong Y, Li X, Li XD. A chemical reporter facilitates the detection and identification of lysine HMGylation on histones. Chem. Sci., 2018 , 9, 7797-7801.

25. Jing Y, Liu Z, Tian G, Bao X, Ishibashi T, Li XD. Site-Specific Installation of Succinyl Lysine Analog into Histones Reveals the Effect of H2BK34 Succinylation on Nucleosome Dynamics. Cell Chem. Biol., 2018, 25(2), 166-174.

24. Andolina G, Wei R, Liu H, Zhang Q, Yang X, Cao H, Chen S, Yan A, Li XD, Li X. Metabolic Labeling of Pseudaminic Acid-Containing Glycans on Bacterial Surfaces. ACS Chem. Biol., 2018, 13(10), 3030-3037. 

23. Li XM, Li XD. Interrogating Interactions and Modifications of Histones in Live Cells. Cell Chem. Biol., 2018,18;25(1):1-3.

22. Lin J,  Li XD. Peptide-based approaches to identify and characterize proteins that recognize histone post-translational modifications. Chin. Chem. Lett. 2018, 29(07), 1051-1057.

21. Chen Y, Li TL, Lin X, Li X, Li XD, Guo ZCrystal structure of the thioesterification conformation of Bacillus subtilis o-succinylbenzoyl-CoA synthetase reveals a distinct substrate-binding mode. J. Biol. Chem., 2017, 292, 12296-12310.

20. Xie X, Li XM, Qin F, Lin J, Zhang G, Zhao J, Bao X, Zhu R, Song H, Li XD, Chen PR. Genetically Encoded Photoaffinity Histone Marks. J. Am. Chem. Soc., 2017, 139, 6522–6525.

19. Cui Y, Li X, Lin J, Hao Q, Li XD. Histone Ketoamide Adduction by 4-Oxo-2-nonenal Is a Reversible Posttranslational Modification Regulated by Sirt2. ACS Chem. Biol., 2017, 12, 47-51.
18. Yang T, Li XM, Bao X, Fung YME, Li XD. Photo-lysine Captures Proteins that Bind Lysine Post-translational Modifications. Nat. Chem. Biol., 2016, 12, 70-72.

17. Yang T, Liu Z, Li XD. Developing Diazirine-based Chemical Probes to Identify Histone Modification ‘Readers’ and ‘Erasers’. Chem. Sci., 2015, 6, 1011-1017.

16. Liu Z, Yang T, Li X, Peng T, Hang HC, Li XD. Integrative Chemical Biology Approaches for Identification and Characterization of “Erasers” for Fatty-Acid-Acylated Lysine Residues within Proteins. Angew. Chem. Int. Edit., 2015, 54, 1149-1152.
15. Li X; Li XD. Chemical proteomics approaches to examine novel histone posttranslational modifications. Curr. Opin. Chem. Biol., 2015, 24, 80-90.
14. Bao X, Wang Y, Li X, Li XM, Yang T, Wong CF, Zhang J, Hao Q, Li XD. Identification of ‘Erasers’ for Lysine Crotonylated Histone Marks Using a Chemical Proteomics Approach. eLife. 2014, 3, e02999.

13. Bao X, Zhao Q, Yang T, Fung YME, Li XD. A Chemical Probe for Lysine Malonylation. Angew. Chem. Int. Edit., 2013, 52, 4883-4886.

12. Li, X.; Foley, E. A.; Kawashima, S. A.; Molloy, K. R.; Li, Y.; Chait, B. T.; Kapoor, T. M. Examining post-translational modification-mediated protein-protein interactions using a chemical proteomics approach. Protein Sci. 2013, 22, 287-95.

11. Shen, B.; Li, X.; Wang, F.; Yao, X. Q.; Yang, D. A Synthetic Chloride Channel Restores Chloride Conductance in Human Cystic Fibrosis Epithelial Cells. PLoS One. 2012, 7, e34694.

10. Li, X.; Foley, E. A.; Molloy, K. R.; Li, Y. Y.; Chait, B. T.; Kapoor, T. M. Quantitative Chemical Proteomics Approach To Identify Post-translational Modification-Mediated Protein–Protein Interactions. J. Am. Chem. Soc. 2012, 134, 1982-1985.

Before the year of 2011
9. Li, X.; Kapoor, T. M. An Optical Switch for a Motor Protein. ChemBioChem. 2011, 12, 2265-2260.
8. Wacker, S. A.; Kashyap, S.; Li, X.; Kapoor, T. M. Examining the Mechanism of Action of a Kinesin Inhibitor Using Stable Isotope Labeled Inhibitors for Cross-Linking (SILIC). J. Am. Chem. Soc. 2011, 133, 12386-12389.
7. Li, X.; Kapoor, T. M. Approach to Profile Proteins That Recognize Post-Translationally Modified Histone “Tails”. J. Am. Chem. Soc. 2010, 132, 2504-2505.
6. Li, X.; Shen, B.; Yao, X. Q.; Yang, D. Synthetic Chloride Channel Regulates Cell Membrane Potentials and Voltage-Gated Calcium Channels. J. Am. Chem. Soc. 2009, 131, 13676-13680.
5. Li, X.; Wu, Y. D.; Yang, D. Alpha-aminoxy Acids: New Possibilities from Foldamers to Anion Receptors and Channels. Accounts Chem. Res. 2008, 41, 1428-1438.
4. Li, X.; Shen, B.; Yao, X. Q.; Yang, D. A Small Synthetic Molecule Forms Chloride Channels to Mediate Chloride Transport across Cell Membranes. J. Am. Chem. Soc. 2007, 129, 7264-7265.
3. Li, X.; Yang, D. Peptides of Aminoxy Acids as Foldamers. Chem. Commun. 2006, 32, 3367-3379.
2. Yang, D.; Li, X.; Fan, Y. F.; Zhang, D. W. Enantioselective Recognition of Carboxylates: A Receptor Derived from α-Aminoxy Acids Functions as a Chiral Shift Reagent for Carboxylic Acids. J. Am. Chem. Soc. 2005, 127, 7996-7997.
1. Yang, D.; Li, X.; Sha, Y.; Wu, Y. D. A Cyclic Hexapeptide Comprising Alternating α-Aminoxy and α-Amino Acids is a Selective Chloride Ion Receptor. Chem. Eur. J. 2005, 11, 3005-3009.